Visualizing Functions On Groups

Functions of the form G \to \mathbb{R} or G \to \mathbb{C}, where G is a group, arise in lots of contexts.

One very natural way this can happen is to have a probability distribution on a group, G. The probability density of group elements is a function G \to \mathbb{R}.

Another way this can happen is if you have some function f: X \to \mathbb{R} and G has a natural action on f‘s domain – if you care about the values f takes at a particular point x, you are led to consider functions of the form g \to f(gx). For a specific example, the intensity of a particular pixel, x, in a square gray-scale image, f: [0,1]^2 \to \mathbb{R}, subject to flips and rotations, can be considered as a function D_4 \to \mathbb{R}.

Basic Visualization

Recall that we can visualize finitely generated groups by drawing Cayley Diagrams. (There’s a nice book, Visual Group Theory by Nathan Carter, that teaches a lot of basic group theory from the perspective of Cayley Diagrams.)

D4.png

The natural way to visualize functions on groups is to picture them as taking values on the nodes of the Cayley Diagrams. One way to do this is by coloring the nodes. In the following visualization of a real-valued function on D_4, dark colors represent a value being close to zero and light colors close to one.

D4-graph.png

Basic Operations

Just as we can with \mathbb{R} \to \mathbb{R} functions, we can do pointwise addition of two functions:

D4-graph-PointPlus.png

Or do pointwise multiplication:

D4-graph-PointMult.png

In addition to doing various pointwise operations to the function, we can also do an operation analogous to “translating” a \mathbb{R} \to \mathbb{R} function. This is just permuting the domain by multiplying the input by a group element before applying the function.

D4-graph-Translate.png

What’s Coming?

Studying functions with interesting structures for domains (in particular: groups, monoids, graphs and categories) feels like a rich area to me, and I haven’t been able to find much work focused on it. I don’t know what area of math it should fall in.

(Character theory studies functions of the form G \to \mathbb{C}, but they are functions with very specific properties, not the general case. Harmonic analysis considers such functions, but only in narrow contexts.)

It’s well known that one can generalize convolutions and the Fourier transform to groups. However, it seems like many people don’t find them intuitive. It turns out that from the right perspective they are quite natural and we’ll address them in a future blog post, now that we’ve built up some basic tools for reasoning about them. We’ll also look at generalizations to other structures.

Finally, and perhaps most interesting to me, is that these notions appear to provide us with a nice framework to generalize deep convolutional neural networks…

About these ads

Tags: , ,

One Response to “Visualizing Functions On Groups”

  1. Azim Fancy Says:

    Very interesting Christopher. Thank you for sharing.

    Azim

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s


Follow

Get every new post delivered to your Inbox.

Join 466 other followers

%d bloggers like this: